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A description is given of a number of numerical schemes to solve an
KorTewea . da Vrizs)
evolution equation, that“arises when modelling the propagation of water waves

A
in a channel. The discussion alsc includes the results of numerical experi-
ments made with each of the schemes. It is suggested, on the basis of these

experiments, that one of the schemes may have (discrete) solitary-wave

solutions. f:~\‘\\~‘_~___—_____—
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’:‘ SIGNIFICANCE AND EXPLANATION
: “
55
S
1Y a A
. There has been great interest in recent years in certain nonlinear,
™
}ﬁ dispersive systems used to model the propagation of waves in a variety of
NS
}? situations. In the particular context of wave propagation in shallow water,
. two model equations have been used widely to describe the evolution of such
:: waves over a time scale related to their amplitude. (A more complete
\ .
<.
zﬁ discussion of the time scales involved and of the similarity between the
Wy
solutions of the two equations is given in MRC Report #2477 by the same
~
’,} authors.) Both of these models have smooth solitary-wave solutions - isolated
“
P waveforms that travel at constant speed and whose shape is independent of
) time. One of the models, the Korteweg-de Vries equation, has been studied
-~
‘ﬁ extensively, both from a theoretical and a numerical viewpoint. The present
O
%t: paper describes a numerical study made of the second equation. Several
N numerical schemes, having second, fourth and higher order accuracy, are
‘ﬁ described and results given of tests made with a number of these schemes
éﬁ utilizing the exact solutions to the continuocus problem afforded by the
- solitary wave. A variety of subtle tests were used to study the growth of
‘o )
jj errors when using the discrete approximations, the results of which indicated
}é interesting qualitative differences between the schemes. In particular, it
would appear that one, and only one, of the schemes tested had a (discrete)
Yy :
‘ :} solitary-wave solution. It would be interesting to know if the system of
yﬁj difference equations associated with this scheme really admits a solitary-wave
: solution.
k-
9 .
B
4
e * The responsibility for the wording and views expressed in this descriptive
‘:' summary lies with MRC, and not with the authors of this report.
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NUMERICAL SCHEMES FOR A MODEL FOR
NONLINEAR DISPERSIVE WAVES

J. L. Bonal, W. G. Pritchardz and L. R. Scott3

1. Introduction

In this paper we examine some numerical schemes for the initial-value

problem for the real-valued function u(x,t) given by

+ux+suu-'¥'2u =0, x€ER, t >0, (P1)

.. x xxt

t

u(x,0) = g(x), (p2)

vhere 8 > 0 and v > O are constants, and g is a given function comprising the
initial datum for the differential eqpﬁtion. This problem, vhich arises in the
theory of water waves, has been studied in recent years by several workers:
Peregrine [13] examined its possible relevance to the temporal development of
undular bores; a mathematical theory for the problem was developed by Benjamin,
Bona and Mahony [3]; and, more recently, the present authors [7] have made a
detailed comparison of the model with the outcome of some laboratory
experiments. The problem (P) is closely associated with the inital-value problem

for the Korteweg-de Vries equation

-2
u +u +Bu +y u_ =0, (1.1)

1

Department of Mathematics, University of Chicago, Chicago, IL 60637.

2

Fluid Mechanics Research Institute, University of Essex, Colchester, Essex,
C04 380, United Kingdom.

3

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109.

Sponsored by the United States Army under Contract No. DAAG29-~-80~C-0041, This
work was partially supported by Brookhaven National Laboratory, Contract EY-
36~C-02-0016; ICASE at NASA Langley Research Center, Contract NAS1-14101; Air
Force Contract P49620-79-C0149.




in that both equations have been advocated as models for the same physical
phenomena (e.g. see - ‘Benjamin et al. [3]). Indeed, when the initial datum g is
restricted to conform to that arising in many physical applications, it can be
shown (see Bona, Pritchard and Scott [8]) that the two equations yield essentialy
the same solution over a non-trivial time scale. This latter work also point.s
out some other qualitative similarities between the solution of the two problems
over longer time scales.

Several numerical studies of (P), or closely associated problems, have been

reported: e.g. see Peregrine [13], Wahlbin [16], Eilbeck and McGuire (9], [10],
Alexander and Morris [2], Bona et al. [6], [T]; Abdulloev et al. [1] describe the

results of some interesting computations for (P), but no details are given of the
methods employed. Most of these studies present the results of formal calcula-
tions, except for the work of Wahlbin in which an analysis is given of a Galerkin
method for a (spatially) periodic version of (P) and that of [7] in which an
analysis is given of a finite-difference method for an initial- and boundary-
value version of (P). Both these latter studies also showed that a specific
implementation of the methods displayed the expected convergence properties when
the mesh was refined.

While developing the numerical method used in [7] a number of finite-
difference schemes for (P) were also developed and tested, and the purpose of the
present paper is to describe some of the comparisons that were made between these
various schemes. A description is given in §2 of the methods studied, consisting
of a second-order method and a number of fourth-order schemes. The discussion
also 1indicates how efficient schemes ha.ving‘ arbitrary order accuracy can be
generated. In §3 a discussion is given of the numerical experiments, including

standard convergence studies along with a number of more subtle, subsidiary

experiments.




zi The main numerical experiments described below are related to special solu-
L4
1 tions to (P) known -as solitary waves. This one-parameter family of solutions
’ represents single-crested waves of elevation and is given by
i | 2 ) |
SO u(x,t) = U sech{al(x - xy) = (1 + 3 BU)t]}, (1.2)- ;
for U>0 and a = [1—2- BYZU(I + -;- BU)'III/Z. corresponding to the initial datum
4t
: g(x) = U sech®la(x - x)1 . (1.3)
- The arbitrary parameter xg 8ives the location of the point of maximum amplitude
_\‘,' of the solitary wave at time t = 0., |‘These solitary waves propagate without
150
"N change of form at the steady speed (1 +% BU), determined by their maximum
‘ ~'
amplitude U.
A
.";:; An especially interesting feature to emerge from our numerical experiments
f\- »
:;’} is that one of the schemes under study appeared to have a discrete solitary-wave
b
solution.
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2. The Numerical Schemes

In this section a description is given of the various schemes that have been
studied. First we shall describe several semi-discrete, spatial approximations
to the solution to (P) and then go on to descride the temporal approximations
that have been used. As indicated in the introduction, Benjamin et al. [3]
showed that (P) is a well-posed problem and deduced regularity properties of its
solution u (in terms of the regularity of the corresponding initial datum g).

They also derived an integral representation for u, namely
. 1,2
u (x,t) = [ Kx,y)(u + 3 8u)(y,tldy, (2.1)
-

where K(x,y) :=-;-Yasgn(x - y)e-le'ﬂ, which representation we have used to
generate the spatial discretizations described here. The ideas outlined below
are closely related to the work described in [7], to which paper repeated

reference will be made for some of the technical issues that arise.

2.1 Spatial discretizations

2+.1.1¢ The GEM scheme

The spatial discretizations were effected first by truncating the infinite
interval of integration to a finite interval [xl,xal and then by taking

quadrature approximations of the integrals

% x 1, 2, Xa 1,2
[ K(x,y)(u + 5 8u M y,t)dy and [ “K{x,y)(u + 5 Bu y,t)dy. (2.2)

33 Xl x

!
’: Justification for the truncation of the infinite interval can bte given using

I
Ings arguments of the kind described in [7]. Note that K is smooth except for a jump
1‘ discontinuity on the diagonal y = x and so, by splitting the interval of .
Y
», -4-
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integration at x, the smoothness of the integrand on each of the subinterivals is
determined entirely by the smoothness of the initial datum g (cf. (2.1)). The
quadrature approximation of the integrals used here is the Euler-Maclaurin
formula truncated at fourth order, namely the trapezoidal rule on a uniform mesh
vith one derivative correction at each of the end points of the ranges of
integration. When. these derivative corrections fall upon the unknown
(u + -;— Bu2) -they are approximated by a centered, second difference. This
discretization gi\ies a quadrature rule similar to the one derived by Gregory (ct.
Goldstine [11]) prior to the work of Fuler and Maclaurin, the only difference
being that here derivatives of K have been found exactly. A further simplifi.
cation can be made, as indicated in (7], by ignoring certain small terms arising
at the extremities Xy and X, of the interval of integration.

These approximations lead to a system of ordinary differential equations for
functions w(t), where u; approximates u at the 1*® quadrature point (i.e.,
us(t) ~ u(idx,t)). Here 1 = Nys Ny+1,...,N5, with Ny := X;/4x, N, := X,/Ax,
and Ax denotes the mesh size. These equations comp;ise a semi-discrete

approximation to (2.1), taking the form
. 1l
u, (t) = F,((u + 5 Buou)(t)), 1 =N ,eee,Ny, (2.3)

vhere u = (unl,...,uﬁa), the symbol uou is defined by

(uOu)i 1= uia, (2.4)
and Fi(v) = Fi(le""’vNa) is given by
N
2 1 2 .
Fi(v) 1= AX{JZN I((:le,,ij)vJ -3 Y (Vi+1 - vi-l)}’ (2.5)
1

with the understanding that K(x,x) = 0 for all x, and VN1-1 = vnaﬂ. = 0 whenever

-5=-
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j'_x; these expressions appear. ‘More complete details of the derivation of these
B d

e formulae can be found in [7]. We shall refer to the spatial discretization
Y (2.3)~(2.5), as well as the simplification to be described below, as the Gregory-
3%
1 Euler-Maclaurin (GEM) scheme.
B As it stands the method (2.3)-(2.5) involves a discrete convolution to
T~ calculate F = (FNI,...,FNZ) and is therefore not a very efficient procedure.
3

1$"

AT

"j However, this may be overcome in the following way. Define a second-difference
n.\1

‘ operator D2 such that

150 2 . YAx -Y8x
3 (D v)i = vy - (viﬂ. -2v, + vi—l)/(e -2+ e ), (2.6)
128 .

o TeR

i which we write in the form

oL ey

A .

;:‘: ﬂvi + b(vi+1 + vi-l)’

AR .
oy -1 1 2 2 b

o s0o that a = 1 -~ 2b and -b™* = (2sinh(-2-vax)) (= (yAx)< + O(yAx) ). We want to
N apply p2 to the convolution term of (2.5), and it is therefore convenient to
q.'.\
;—ZS: split F into two parts, namely

¥ -

§ Fi(v) =: F;1(v) + F,2(v),

oy

e

= where F;l is the convolution term and F 2(v) e -l YzAx(v -V, .)e Then
N i i ") i+1 T 141 i
..

N for Ny < i < Ny, a straightforvard calculation gives
o 2 S _ 2 o
= (p l?l(v))i =5 5y Ax(v, - v, ;) = -126F, (). (2.7)
\n
.‘-,

M If again we ignore terms involving points outside the interval [X;,X,], e
N approximation to F! (under suitable assumptions on v) is given by the solution
;_,. f(v) to the tridiagonal system of equations
N

Oaﬁ
i Af = -12bFP(v), (2.8)
-

=

N

Wy -6-
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vhere

 Thus, it is more efficient computationally to use the semidiscrete scheme
a(t) = K(u + 2 suou)(v)),
ui(o) = g(18x), 1 = N seeesBy

vhere ¥ = ¢+ !2, and for which F can be calculated in O(N, -"N,) operations by
solving the tridiagonal system (2.8). Using the same methods as those described
in [7], it can be shown that (2.9) has an accuracy of
-r(X,-X,)
olaxt + ¢ 2 17y, (2.10)

vhere r is a positive constant.

Although (2.9) does not appear, superficially, to be a standard
discretization it can, nevertheless, be viewed as a finite-difference

approximation to (2.1) (or Pl) written in the form

(1- 7'23;(2)% =~ (u+ % Bus). (P1, bis)
To see this define difference operators D' and D02 by
(Dlv)i 2= (vy4y - Vvi.1)/28x, W
> (2.11)

(0027)1 = -(vi-l - 2?1 + v1+1)/Ax2.J

-----
.......
............
----------
.................

.........

........
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and a parameter x by

e

R AN
LA

x 1= -bAx2 = (Ax/2sinh(-]2‘- yax))2. (2.12)

b

Sl dd

Then, after multiplying the (GEM) scheme by D2 = I + xDoa, and using the

f’
“j l.'l“ﬂl

definition (2.8) of £, it follows that

ety e 2 e
'-.‘ - : ‘ :’ )")"a’

-~
k¢,

2ve _ .2y 1,2 1,2 2.1 ~
(I+KD° Ju = -y ,(.<+-1§Ax )1+12 kAx“Dy ID"v, (~ *3)

2EM)

FEder
o
N

0 » Otherwise,

S I

._"
A
L N

and w := (u);, §; <1 < Ny, uy := O othervise.

‘.-:" Note that
€ = v2[1 - Lvan)? + o((vax)™)], (2.15)

which, together with (2.13) can be used to generate other discrete methods for

(r).
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2.1.1 A second-order method,

At second order the (GEM) scheme agrees with the second-order centered-
difference approximation to (Pl), namely
( + v2p,2) 4 = -nlv, (2.16)(cD)
vith v defined as in (2.1L4),
This kind of spatial differencing has often been used (e.g. see Eilbeck and
MCGuire [9]), though sometimes the nonlinear term is not cast in the

'conservative' form used here.

2.1.3 Another fourth-order method

Keeping terms in (2.13) only to fourth order ylelds an approximation to (P1)

of Stormer-Numerov type (cf. Stoer & Bulirsch [15]), namely

(1 + 22 --%5 (YAx)z)Doa)ﬁ =~ (I+ %E'Axanoa)Dlvi (2.17)(sN)

and again v is defined as in (2.14).
As with the (GEM) scheme, this method can be shown to satisfy the error
bound (2.10), some specific tests of which are described below.

»

2.1.4 Remarks

(1)  Although the .(GEM) scheme ((2.9) or (2.13)) nhas only fourth-order
spatial accuracy, schemes of arbitrary-order accuracy can be derived in a similar
wvay by retaining the required number of terms in the Euler-Maclaurin formula
(vith the appropriate derivative corrections being replaced by differences). For
these higher-order schemes the system of equations corresponding to (2.8) is not

~

altered, the only change in the scheme being that P is of the form F = £ + Fe,

where F2 incorporates the higher-order derivative corrections; the orignal Fa,




“' """" - - - -
Ly

L

\!

‘;:, however, remains on the right-hand side of (2.8). This occurs because the
I~

" difference operator D2 (= 1 + KDoa) is an infinite-order approximation to
. (1 - y‘aaxa), in the sense that

3

. 2 -2, 2,-1 1

N D°(1 - v °3_°) 3.4 = xD' ¢,

oY x x

o for all sufficiently regular functions ¢. Thus the term f in the definition of F
L%

::; is infinite<order accurate, and it remains only to determine F2 to the desired
N

o accuracy.

h 3 (11) It is more efficient to comptute the (GEM) scheme in the form (2.8)-
>

'f. (2.9) rather than in the form (2.13): with the fourth-order scheme, for example,
the latter arrangement requires the calculation of a penta-diagonal approximation
A to 3x, whereas the former involves only Dl. In general, one could envisage a
N o~

“:: variable-order method where F2 is calculated to different orders of accuracy in
N

-‘ different parts of the domain (depending, say, on some local estimation of the
= spatial errors).

- (11i) ‘The generalisation of the (GEM) scheme to obtain higher-order methods
~ may appear somewhat academic, but the use of the fourth-order scheme in [7] (in
” modelling a laboratory experiment) placed a considerable burden on the data
o

"

sampling to ensure the desired accuracy of the numerical solutions. Similarly,

. ’h".'

in another study concerning the interaction properties of two solitary-wave
solutions of the family (1.1) (see Bona et ai. [6]), the implementation of a more

accurate scheme would have been beneficial. At the outset of each of these

o projects the fourth-order scheme seemed to be more than adequate but, in
/: retrospect, we should have considered more seriously the relative efficiency of
: the higher-order schemes. .

" (iv) ‘The above methods can readily be adapted to solve (Pl) posed on some
:: fixed interval [X;,X,|, subject to the initial condition that u(x,0) = g(x) for
W

\j -10-
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':-_Z X; € x < X, and the boundary conditions u(xy,t) = hy(t) for t > 0, 1 = 1,2, where
'.::I 8,h; and h, are given functions. (Theory relating to this initial- and two-point
._-.. boundary-value problem has been provided by Showalter [14] and Bona and Dougalis
5

‘I

Ef:: [5]. In case X; = -= or X, = 4=, the condition u(x,,t) = h;(t) may be replaced
s

by a growth condition, as in Bona and Bryant [4].) These methods may also be
o used to handle the periodic initial-value problem in which the initial datum g
“

: and the solution u are both required to be periodic in x with a given period. We
-2
-.'7 have implemented the GEM scheme for some of these problems.

Y
.\
N 2.2 Temporal discretization
30

; All the spatial discretizations of (P) described above lead to a system of
-* ordinary-differential equations of the form

.

2, o :

= u(t) = F(ult)), t>o0,
. B 0 (2.18)
‘:n' “(0) = u *

3.\

. .
ﬂ: vhere, for example, nio = g(18x) for Ny < 1 < Np. Moreover, the function &

. remains suitably bounded as Ax + O, so that the problem (2.18) is not in any way
,':- stiff for small values of Ax. An indication of why this is so is given by.a von
Z:';' Neumann-type sta.bili;ty analysis of a linearized version of the problem with
periodic boundary conditions. Thus, in (2.1k), set vy = Uuy for all i, where U

N is a constant, and consider the initial-value problem (P) with 2w-periocdic data
9]

N and corresponding periodic boundary conditions in space. Then, for all three of
.3 .

5 the above spatial discretizations, the resulting & has eigenvalues uy of the
form
.j; we = UM,

-
., vhere 0 < k < 2n/Ax and, for each k, Ay is real with || < C, vwhere C remains
s

LY

» -11-
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bounded as Ax approaches zero. In particular, we may take

f
%- » for CD(2.16),
C = ¢ -;-4- 1—2- YAx » for GEM(2.13),
(1- %5 (mx)a)‘l/2 , for SN(2.1T).
\

Note that, for the (SN) scheme, we must have Ax < 1uby~l in order that the
multiple of D°2 on the left-hand side of (2.17) be positive. For the full
nonlinear problem the precise boundedness conditions satisfied by & are given in
11. It follows that any of a variety of methods for integrating ordinary
differential equations can be used to discretize (2.18).

For the second-order scheme (2.16) it is natural to consider a second-order
temporal discretization and, since stiffness is not a problem, an explicit method

can be used. We have therefore chosen the so-called "leap-frog" schenme

I AtF(w?), n > 1. | (%L;‘?)

The 'starting value' ul was obtained from a step using the Runge-Kutta scheme
descrived below. (In fact, for the numerical experiments to be reported in §3,
three steps of (RK) were used initially so that (LF) was used only for n > 3.)
The discretization (2.16), (2.19) of (P), the (CD-LF) scheme, has an error bound

of the form

-r(X, - X.)
olax® + a2+ e 2 1y, (2.20)

where r is a positve constant.

!
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For the fourth-order schemes (GEM) (2.8, 2.9) and (SN) we have used the

PR B

o, 8 A 4A A

following fourth-order Runge-Kutta method, for n > O:

a-a

W
‘l

2.

Z:j W o=l -,1'—, at% (),

o ’

N

f‘: W =4 -]-2'- At;(vl), \ (2.21)
s v o= At?(vz), (RK)
7 W= s 2 atl2 2w + 2 20°) + 2 + SO

] »
3 Once several steps of (RK) have been calculated it could prove more efficient to
3y, switch to a multi.step scheme. We have, therefore, also considered the following
o prediction-correction scheme , for n > 3:
\, N\
N T e Loatlss & - s9&™t 4 392™2 L g 273,
N , r (2.22)

. (Ms)

X e e ?%6 atl2s1 (1) + 6ueR® - 2601 4+ 1068°2 - 197773,

N - :

N

where % J denotes ' K(ul) and ul, u2, and u3 are calculated by (2.21). (Note
: that this prediction-correction scheme is used in the so-called PECE mode, as

described by lambert [12].)
All four possible combinations of the spatial discretizations (GEM) or (SN),
coupled with the temporal discretizations (RK) or (MS) provide a fully discrete

approximation to (P) satisfying the error bound

-r(X,.-X.)
by ot 271, (2.23)

o(ax” + At + e

A

vhere r is a positive constant.
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The (GEM) spatial discretization, coupled with the standard fourth-order
Adams-Bashforth-Moulton prediction-correction scheme (e.g. see Lambert [12]) was
used in [T] to solve (P1) posed with initial and boundary conditions.
|
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'
:_, 3. Mumerical Experiments
3
YS
<« 3.1 Preliminary Definitions |
X In this section a description is given of some numerical experiments made
with our implementations of the above methods. All the experiments to be
'5 described relate to initial data g(x) given by (1.3). This function {is
:i associated with the family (1.2) of exact solutions to the problem (P) and
a therefore provides a convenient means of checking the convergence properties of
" the various schemes. It has, in addition, enabled us to make a number of other,
"' more refined, studies of the properties of the numerical solutions.
: It is standard practice to determine empirically the convergence of a scheme
I to test both its theoretical basis and the correctness of its implementation.
L Pairly detailled studies of this kind have been made for the methods under
consideration, but we give here only a sample of the results that have been
$: obtained. All the experiments to be described vere made with B = 1.5 and Y2 = 6,
: identifications vhich henceforth will be assigned without further reference.
_‘ These values relate to the aforementioned physical problqn‘ of water waves
; propagating in a uniform channel. (We have, however, carried out similar tests
g wvith other values of B and y.) Thus, the quantity a appearing in (1.2) is given
by a= [3U/4(1 +-;-.U)11/2, and the solitary wave of amplitude U has speed
'I- c i= (1#%0)- .
"‘ The truncation of the infinite interval described in §2 was usually
~ effected, at t = 0, by choosing X; and X such that
o)
‘5 glxJu=¢, 1=1,2 (3.1)
o
H Here ¢ was chosen empirically so that the truncation had negligible influence on
R.; the results. At each time step (or after a certain specified number of time
.'j;'
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steps) the right-hand boundary was moved outwards (i.e., X, was increased) so

that its distance from the ‘'crest' of the solitary wave did not, on average,

decrease with time. Whenever such an expansion of the domain was made the vector

u wvas extended by zero on its undefined components. In certain experiments it

vas also possible to move the left-hand boundary X; to the right without

influencing appreciably the experiment in question. (In such cases, the vector u

vas simply truncated.) The changes in Xl and X2 were made automatically by the

code, as follows. After each M time steps the values of X, and X, were moved a

distance CyAtM, corresponding to speeds Cy and Cy. A typical value for M was 25
and Cl and C, were chosen appropriately for specific computations. In particular
Cl <1 +%—U < 02’ We were conservative about the positioning of the endpoints
of the domain but, even so, in some of the experiments with very fine meshes the
errors generated by the numerical scheme were so small that the positioning of
the boundaries (at t = 0) gave rise to a nonnegligible additional error.
However, this additional contribution was never more than 5% of the total error.
We shall not, therefore, report the values of X,(t) and Xo(t), but give only

their values at t = O. These will be stated implicitly by quoting either x4 (ct.

(1.3)), in which case Xy = 0 and X5 = 2x5, or by quoting the value of € in (3.1).

To describe the convergence studies it 1is convenient to introduce some

definitions. Let the solutions to the discrete problem at time t = jAt, where )

is a positive integer, be denoted by n(idx,t), Ny(t) < 1 < Ny(t), and let the

exact solution (1.2) be denoted by u(x,t). Define a relative difference E

between the two functions by
N N,

2
E(t) := [ § [u(1ax,t) - n(18x,8)1%/ § [u(tax,t)]
i=N 1=N1

211/2 (3.2)

1
Another functional of interest in this problem is the difference between the

amplitude o of the discrete solution and that of the solution of the continuous

~16-
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problem, a difference we shall refer to as the height error H(¢t). This quantity

is defined in the following way. Find max{n(isx,t) : Ny(t) < 1 < N,(¢)}; let I
be the value of i at which the maximum is achieved. (If there is more than one
such 1, let I be the smallest of these.) Then interpolate the function values
n(18x,t) by a quartic polynomial Q(x) at the points x = iAx, for i = I+k with
k] < 2 (1.e., at the five points centered about the maximum of =w). Now
determine the maximum value of Q using Newton's method, starting the iteration at
x = IAx. (This procedure was successful in all cases.) Denote this maximum by

Npe Then, finally, define the height error to be

H(t) := U - n_(¢t). (3.3)

The value of x for which Q achieves its maximum, say x;, provides the possibility

of determining a phase error at each t for the discrete solution and, by taking
differences, of obtaining an average speed for the wave crest in the discrete
solution. This speed can then be compared with the speed ¢ of the solitary-wave
solution to the continuous problem and with the speed (1 + % "n) of a solitary
wave of the family (1.1) with amplitude nj.

Finally, knowing the values of n, and x, raises the possibility of yet
another comparison, namely the difference between the solution n(idx,t) of the

discrete problem and’the function

3
g(x) = n_nsecha{[-—'-“—]'_'—]]',z(x - xm)}. (3.4)
’ 1+ §'ﬂm) .

The function § corresponds to the wave of the family (1.1) of amplitude o vhose

crest is located at x,. Then, analogously to the definition (3.2) we write

N, N,
D(t) = { § [n(tax,t) = c(iax,6)12/ ¥ [c(iax,t)12}272, (3.5)
1=N1 1=N1

which quantity we shall refer to as the shape error.

-17-




" 3.2 Convergence studies

Since, for the convergence studies, it is sufficient to use a fixed ratio of
4x to At, one of our early experiments was to determine an 'optimal' value for
this ratio. The results of one such test (see table 1) indicate that the best
accuracy was achieved wvhen Ax = At. We decided, therefore, to fix on the ratio

Ax = At (=: A) for the remainder of the study.

At\Ax 0.32 0.16 0.08 0.04 0,02
0.32 | 0.25(-1) 0.37(-1) 0.36(-1) 0.36(-1) 0.36(-1)
0.16 0.12(-1) 0.12(-2) 0.18(-2)  0.18(-2) 0.18(-2)
0.08 0.14(-1) 0.80(-3) 0.53(-k) 0.86(~4) 0.89(-k)
0.04 | 0.14(<1) 0.87(-3) 0.51(-k)  0.28(-5) 0.48(-5)
0.02 0.14(-1) 0.87(-3) 0.54(-k) 0.33(~5) 0.14(-5)

TABLE 1. The errors E obtained at t = 19.2 using the (GEM-RK) scheme for a

solitary vave of amplitude U = 1. (These experiments had Xo = 11.) The
numbers in parentheses ‘1nd1cate the exponent of 10 multiplying the

preceding numbers, e.g. 0.25(-1) = 0.25 x 10-1.

A number of convergence studies have been made using the fourth-order
schemes (GEM-RK), (GEM-MS), (SN-RK) and the second-order scheme (CD-LK), the
tests being carried out with solitary-wave amplitudes U of 0.1 and 1.0, A
summary of the results of these experiments is given in table 2 where the errors
E at time t = 30, T0 and 120 are given. (Recall that the speed of the
propagation of these waves is (1 + %—U) 80 that when t = 120 they will have
travelled distances of 126 and 180 spatial units, respectively.) The rows
labelled 'ratio' in this table give the ratio of the numbers above and below the

entry and indicate the ratio by which the error decreased when 4 was halved; for

-18-
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the fourth-order schemes this ratio should approach 16 as A decreases to zero and

should approach 4 in the same limit for the second-order scheme. That this
apparently wvas the case for our implementations can be seen from the results with
U = 0.1. With the larger wave amplitude, U = 1.0, convergence orders con-
siderably in excess of 4 were found in many of the tests made with the fourth-
order schemes, suggesting that still further mesh refine.ent was needed before

the asymptotic convergence rate would be achieved. Under similar conditions,

hoﬁever. the asymptotic convergence 'rate was apparently realized with the second-

order (CD-LF) scheme. The convergence properties of the (GEM-MS) scheme with

U = 1.0 may seem to be somewhat anomalous, but they are probably a consequence of
the fifth-order time stepping used in this scheme: with the meshes employed the
dominant component of the error presumably arose from the temporal approximation
and the anticipated fourth-order rates would therefore only emerge with much
finer meshes or by using a different ratio for At/Ax. The run times on a CYBER
175 for the tests with A = 0.02 were approximately 400 s (GEM-RK), 267 s (GEM-MS)

and L0O s (SN-RK).
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0.32
ratio
0.16
ratio
0.08
ratio
0.0k
ratio

0.02

0.32

ratio

0.16

ratio
0.08
ratio
0.0k
ratio

0.02

U= 0.1 = 1.0

r A \ ~— —A )
30.720 72,320 120.320 30.720 72,320 179.320
0.108(-1)  0.256(-1) 0.429(-1) - - -
15.8 15.7 15.7 - - -
0.685(-3) 0.163(-2) 0.274(-2) 0.2u9(-2) 0.141(-1) 0.400(-1)
15.9 15.8 15.9 28.4 31.3 31.3
0.430(-4) 0.103(-3) 0.172(-3) 0.876(~4) o0.451(-3) 0.128(-2)
16.0 16.1 15.9 26.5 32.2 32.4
0.269(-5) 0.641(-5) 0.108(-h) 0.330(-5) 0.140(-k) 0.395(-k)

- - - 21.4 24,4 28.8

- - - 0.154(-6) 0.574(-6)  0.137(-5)

(a) (GEM-RK)

0.107(-1)  0.255(-1)  0.429(-1) - - -
15.6 15.6 15.6 - - -
0.686(-3) 0.163(-2) 0.275(-2) 0.167(-1) 0.122 0.361
15.9 15.8 15.9 13.4 15.9 16.6
0.432(-4) ,0.103(-3) 0.173(-3)  0.125(-2) 0.765(-2)  0.218(-1)
16.0 16.0 16.0 25.2 26.8 27.3
0.270(-5) 0.643(-5) 0.108(-4) 0.49T7(-4) 0.285(-3) 0.798(-3)

- - - 27.9 29.8 30.2

- - - 0.178(-5) 0.956(-5) 0.264(-k)

(v) (GEM-MS)

-20-
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U= 0.1 U=1.0
A AL
r ) 7 N
A\t 30.720 72.320 120.320 30.720 72.320 120.320
0.32 0.295(-3) 0.44T(-3) 0.563(-3) - - -
ratio 15.9 15.9 16.0 - - -
0.16 0.186(=4) - 0.281(-k) 0.351(-b) 0.4k0(-2) 0.188(-1) 0.481(-1)
ratio | 16.0 16.0 16.0 21.h 25.1 26.9
0.08 0.116(=5) 0.176(-5) 0.219(-5) 0.206(-3) 0.750(-3) 0.179(-2)
ratio 15.8 1600 1600 19.& 22.9 25.2
0.0k 0.733(=T) 0.110(-6) 0.137(-6) 0.,106(-4) 0.327(-4) 0.709(~k)
ratio - - - 17.2 18.8 21,2
0002 - - - 0.616(-6) 0017h("5) 0.33‘6(—5)
(¢) (SN-RK)
0.32 0.393(=2) 0.797(-2) 0.113(-1) - - -
ratio 301- 3.9 h.O - - -
0.16 0.106(-2) 0.203(-2) 0.283(-2) 0.143 0.311 0.496
ratio | 3.9 4.0 4.0 4.3 4.3 4.2
! 0.08 0.274(-3)  0.513(-3) 0.T11(-3) 0.332(-1) o0.725(-1) 0.118
] ratio | b.1 b0 k.0 k.1 k.1 b1
E 0.04 0.670(-4)  0.129(-3)  0.179(-3) 0.818(-2) 0.178(-1) 0.290(-1)
*3 r‘tio - - - lhO l&.O h.O
] .
% 0.02 - - - 0.204(-2) oO.4h4(-2) 0.721(-2)
w4 (a) (cp-LF)
A
..-’.'.i .
Efj? TABLE 2. The errors E obtained when approximating solitary waves of amplitude 0.1
a and 1.0. (a) (GEM-RK) scheme; (b) (GEM-MS) scheme; (c¢) (SN-RK) scheme;
g | (d) (CD-LF) scheme. € = 0.1 x 107 for all these tests. - An entry in a
"':j' rov labelled 'ratio' is the ratio of the numbers above and below that
r?; entry.
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While table 2 indicates the convergence properties of the schemes with A,
the graphs in figure 1 indicate the temporal dependence of E for a fixed A.
Figure la shows the error E for the various approximations computed with 4 = 0.0L
to the solitary wave having U = 0.1, and figure 1lb shows the approximations found
with A = 0.02 to the wave having U = 1.0. (Note that E is plotted on a
logarithmic scale.)A The (SN-RK) scheme gave %ue best approximation to the
smaller solitary wave whereas the (GEM-RK) scheme gave, by and large, the
smallest errors for the solitary wave with U = 1.0. (Note that the (GEM-RK) and
the (GEM-MS) schemes gave nearly the same errors for the computation of the
‘smaller solitary wave, but for the larger wave the errors were greatly different,
suggesting that the choice At = Ax was not 'optimal' for the (GEM-MS) scheme.)
Both sets of graphs show an initial phase over which the error rapidly increased
and after vwhich there was a slower increase in E. Much of the slower increase
arises because the 'amplitude' of the approximate solutions is, in general,
different from that of the exact solution and therefore the two waves, having

slightly different phase spe=ds, draw apart.

3.3 Further Tests

The dependence of the height error H on time for the various schemes (when
A = 0.02) is shown in figure 2a. The results for figure 2 were obtained using a
solitary wave of amplitude U = 1.0 as the initial datum. (Note that, to
normalize the errors, the ordinates in figure 2 have been scaled by A", where n

is the order of accuracy of the scheme being used.) Thus we see that the

o ‘amplitude’' of the discretely-computed waveforms for both.the (GEM-RK) and the

»:::;::; (SN-RK) schemes were slightly smaller than the amplitude of the exact solution;

—\"-.'

n moreover, after an initial ‘'settling out' period, the amplitude of the

Lo '

Dy approximate solution decreased monotonically with time. TBoth the (GEM-MS) ecnd

3 -22-
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FIGURE 1 The error B (plotted on a logarithnie scale) as a function of ¢
(a) U= 0.1, 4 = 0,04, . : (CEM<RK) apnd (GRM-MS); —— — : (SN-R&)-
—— : (CD-LF). (b)) y = 1.0, 4 » 0.02, —, (GEM-RK); — o — ; (cm'ws)‘
=t (SE-R); — ; (cporz). ' ST
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wave solutions, for calculations using initial data corresponding to a
solitary vave of amplitude U = 1.0 (and € = 0.1 x 1077).
n®ly == = (GEM-MS), 0 =2 b = — : (SN=RK), 8 = U4} aeee (CD-LF).
n = 2, These calculations had A = 0.02. (a) Hd(t)/a? (see 3.3);
(v) D(t)/4R (see 3.5).

=24~

.Tvo measures of differences bhetween approximate solutions and solitary-

: (GEM-RK),
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the (CD-LF) schemes, on the other hand, generated waveforms whose amplitudes
exceeded that of the exact solution. Probably the most interesting feature of
these computations is that the (CD-LF) scheme, in contrast to the other schemes,
generated a waveform which, after an initial period, had an amplitude (or height
error) independent of t. Ve shall consider this point in more detail below.

Another obvious feature of the graphs is the 'kink' near t = 10. This
corresponds to the time at vwhich the crest of the wvave passed the initial
location of the right-hand boundary of the domain, the point where the initial
datum had been truncated. This is not unexpected since the theory for problem
(P) developed in [3] shows that a discontinuity of the sort generated by our
truncation procedure does not propagate. (The larger errors associated with the
second-order scheme presumably dominated the truncation effect so that the 'blip'
was not apparent in that case.)

The same effect is also apparent in comnnection with the 'shape error' D(t),
shown in figure 2b, where a 'spike’ can be seen near t = 10 for all three of the
higher-order schemes. Recall that the shape error indicates the difference
between the discretely-computed wavefc;rm and a solitary wave (1.1) having the
same amplitude and phase location as that of the discrete solution. Thus, the
results of figure 2b suggest that, after an initial ‘'settling-out' period of
about 30 time unitd, the shape of the discretely-computed wave changed only
rather slowly with time, with the exception of the (GEM-MS) scheme which showed
some short-time variation in D superimposed on a more gradual, long term
variation. In keeping with the results shown in figure 2a, the (CD-LF) scheme
generated a waveform vhose sha._pe was eventually independent of t.

Thus, the above results suggest that the (CD-LF) scheme has discrete
'solitary-wave' solutions, whereas none of the other schemes would appear to have

this property. To provide further support for this thesis similar tests were
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made with a variety of different initial wave amplitudes U. This new set of
experiments was made with 4 = 0,16 with the calculations progressing for 8000
time steps to investigate the possibility of very slow temporal changes in H or
De The results of these tests are summarised in figures 3 and U4, the height
errors being giQen in figure 3 and the shape errors in figure 4. It is seen from
these graphs that the height error for the (CD-LF) scheme quickly became constant
at a value that was maintained for several thousand time steps. By contrast the
height errors for both the (GRMM-RK) and the (SN-RK) schemes increased steadily
with time (see figure 3a where the case U = 1.0 is shown). An illustration of
how nearly constant the height error was for the (CD-LF) scheme is as follows.
At t = 23.04, H = ~0.017Tk6 (rounded to 4 significant digits) and from then until
t = 1280.00 the height error was either -0.01746 or =0.01T47, with the fluctua-
tion in the fourth digit probably arising as a consequence of the height-locating
procedure that was used (cf. §3.1). The times taken for the steady situation to
be attained were found to depend rather strongly on the amplitude U of the
initial datum, a feature that is evident in figure 3, but which appears more
obviously in the graphs of the shape error shown in figure 4. Thus, when U = 1.0
it took only about 40 time units for the steady waveform to be realized whereas
vith U = 0.1 it took at least 1000 time units for the discrete waveform to reach
its steady value,

Also given in figure lka are graphs of the shape error D for both the (GEM-
RK) and the (SN-RK) schemes, for the case U = 1.0, It can be seen from these
graphs that the variations of D with time were quite small when t exceeded about
100. Note that this does not mean the discrete wave nearly has permanent form
for, as we sav in figure 3, the 'amplitudes' of these discrete solutions
decreased steadily with time. Rather, the interpretation is that, for t > 100

say, the 'shape' of these discrete solutions differed from a solitary wave (1.1)
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FIGURE 3. The height error vhen A = 0.16 for a variety of initial vave
amplitudes U, (¢ = 0.1 x 10~T). Note the ordinates are magnified by the
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T factor 10°%.

(o) PU=1.0, (MR} 0 el s -2, H(1200)/a% = 36.86

- —+—:U=10, (CD-LF), n=2,s=1, H(1280)/a" = -0.6722;
" —— e : U = 0.75, (CD-LF), n =2, s =1, H(1280)/a" = -0,3u80;
DR e——e— : U = 0.5, (CD-LF), n =2, s =1, H(1280)/a" = -0.1b12.
.. (b)) =———: U = 0.25, (CD-LF), n = 2, s = 2, H(1280)/a" = -0.0324;
- ————:Us=0.1, (CD-LF), n =2, s = 3, H(1280)/a% = -0.00usk.
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PIGURE 4. The shape error vhen A4 = 0,16 for a variety of initial wave ampli-
tudes U. (e = 0.1 x 10~7,)
(&) == ¢¢¢ —m: U =1,0, (GEM-RK), n = Lk, D(1280)/aAB = 0.8869;
: U=1.0, (SN-RK), n =4, D(1280)/aAR = 0.T119;
— e : U 21,0, (CD-LF), n =2, D(1280)/aR = 0.9416;
— = : U = 0.75, (CD~LF), n = 2, D(1280)/AR = 0.6263;
—————— : U = 0.5, (CD-LF), n =2, D(1280)/aP = 0.3680.
(b) ——— —— : U = 0.25, (CD-LF), n = 2, D(1280)/a% = 0.1605;
e : J = 0.1 (CD~LF), n =2, D(1280)/a" = 0.05371.
-28-
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of the same amplitude by approximately a constant proportion. Thus, although the
amplitudes of these approximations to the solitary wave (1.1) decreased steadily
{ . with time the waveform preserved a shape fairly close to that of a member of the

fmily (101) .

._5' Some of the values of D/Al‘ for the (GEM-RK) scheme, from which the graph in
- figure la was drawn are given in table 3.

N

<)

- v 99.84  199.68 299.52 399.36 499.20 599.04  TO1.Lk
-

- p/a*  0.8777 0.8812 0.8825 0.8838 0.8865 0.8860 0.8855
4\:

< t 801.28 901.12 1000.96 1100.80 1200.6k

“~

"' p/s*  0.8841 0.8850 0.8829 0.8835 0.8795

. TABLE 3. Some values of D/AY for the (GEM-RK) scheme, U = 1.0,

‘_:- € = 0.1 x 10'7, A = 0,16, corresponding to the graph

shown in figure La.
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_\‘ M. Conclusions

%

XN A description has been given of a number of numerical schemes to solve the
SE\ initial-value problem (P). The methods studied have either second- or fourth-
-:: order accuracy in both the space and time variables, though one of the schenmes
e has a straightforwvard extension to any desired order of accuracy. Rigorous error
\.:\ estimates can bde obtained for all these schemes using the methods described in
‘-';:: {7]e A description is also given of some numerical experiments made with these
v schemes based on the solitary-wave solution (1.2) of (P). The experiments, which
i included both a standard convergence study and other special tests, revealed some
subtle differences between the errors for the various schemes. So, for example,
:: the multi-step scheme appeared to introduce an oscillatory component to the
sﬁ solution, as indicated by the shape error D (cf. Figure 2), whereas the others
=0 apparently did not. On the other hand, the (CD-LF) computations appeared to
_\::,, settle into a permanent-form solution of its own, a property not evident with the
\\j other schemes. '

‘1 In purely practical terms we found the convergence study invaluable, by way

of exposing errors both in the programming and of a conceptual kind, and as a

guide to performing the computations described in Bona, Pritchard and Scott [6],

N

(71, ana (8]. ‘

-':-'j Finally, the numerical evidence that the (CD-LF) scheme might have
;. permanent-form (solitary-wave) solution was a surprise to us and it would bve of
“ interest to know definitively whether or not this is the case. (We have not a;s
;._.‘_ yet attempted to find an explicit solitary-wave solution to the present problem,
:\ or to demonstrate the existence of such by an abstract argument.) Should a
family of such solutions exist it would be interesting to enquire whether or not
:‘: they would exhibit the so-called soliton property, namely that two solitary wa‘}es
% |
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; of the family would reemerge from an interaction with their shapes unaltered. We
believe the answer to this question to be in the negative for the following

reason. If the (CD-LF) scheme were to have the soliton property for all At and

Al A smemma 3_e_®_"

:3 4x, then the convergence estimates referred to in §2 would imply that the same
holds for (P): as At and Ax tend to zero, the solitary-wave solutions to (CD-LF)
would converge to a solitary-wave solution of (P). But the numerical experiments

described in [6] indicate that (P) does not have the soliton property. It

G K SW &

should, however, be stressed that the above argument is not a proof, even given

the existence of (CD-LF) solitary waves.,
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